S. W. BENNETT, H. J. CLASE, C. EABORN AND R. A. JACKSON School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (England) (Received February 12th, 1970)

SUMMARY

The compounds $(Me_3Si)_2Hg$ and $(Me_3Ge)_2Hg$ have been shown to interact in solution to give the unsymmetrical compound $Me_3SiHgGeMe_3$. An equilibrium is rapidly established.

INTRODUCTION

Redistribution of alkyl groups between dialkylmercury compounds is a slow process; for example, little exchange occurred between $(CH_3)_2Hg$ and $(CD_3)_2Hg$ in tetrahydrofuran during 8 days at 28°, although exchange did take place¹ on prolonged heating at 65°. Consistently, disproportionation of EtHgSiEt₃ to Et₂Hg and $(Et_3Si)_2Hg$ took place² only on heating to 170°. By contrast, we find that exchange of groups occurs rapidly between $(Me_3Si)_2Hg$ and $(Me_3Ge)_2Hg$ to establish the equilibrium (1), in which the mixed compound Me₃SiHgGeMe₃ is a substantial component.

$$(Me_3Si)_2Hg + (Me_3Ge)_2Hg \rightleftharpoons 2 Me_3SiHgGeMe_3$$
 (1)

RESULTS AND DISCUSSION

The interaction (1) was first suspected when pyrolysis (at 210°) or photolysis (at 40°) of a roughly equimolar mixture of $(Me_3Si)_2Hg$ and $(Me_3Ge)_2Hg$ was found to give $Me_3SiGeMe_3$ in 87 or 78% yield, respectively, along with only small amounts of the compounds $Me_3SiSiMe_3$ and $Me_3GeGeMe_3$, which are obtained in essentially quantitative yield in the separate decompositions of $(Me_3Si)_2Hg$ and $(Me_3Ge)_2Hg$ under the same conditions. (The compound $Et_3SiGeEt_3$ has been shown to give predominantly the mixed compound $Et_3SiGeEt_3$ on photolysis².) Again, treatment of the equimolar mixture with air gave the mixed $Me_3GeO_2Me_3$ in 90% yield, along with only small amounts of $(Me_3Si)_2O$ and $(Me_3Ge)_2O$.

The existence of equilbrium (1) was confirmed by Raman spectroscopy. The Raman spectrum of bis(trimethylsilyl)mercury in cyclopentane at room temperature is similar to that of hexamethyldisilane except that the symmetric $Me_3Si-SiMe_3$

J. Organometal. Chem., 23 (1970) 403-405

stretching vibration is replaced by a strong polarized band at 159 cm⁻¹, which can be assigned to the Me₃Si-Hg-SiMe₃ symmetric stretch. Similarly a strong polarized band at 139 cm⁻¹ in the spectrum of bis(trimethylgermyl)mercury can be assigned to the Me₃Ge-Hg-GeMe₃ symmetric stretch. Treating the Me₃Si-Hg-GeMe₃ molecule as a linear triatomic system, with the Me₃Si and Me₃Ge "atoms" having effective masses of 73 and 118, respectively, and assuming no interaction between the Me₃Si-Hg and Me₃Ge-Hg bonds, it can be calculated very simply (*cf.* ref. 3) that the symmetrical stretching should have a frequency of about 149 cm⁻¹*, and an equimolar mixture of (Me₃Si)₂Hg and (Me₃Ge)₂Hg did, indeed, show a very strong polarized band at 146 cm⁻¹, although the natural width of all the bands precluded complete separation of this band from those at 139 and 159 cm⁻¹. An identical spectrum was given by a solution of a separately prepared sample of Me₃SiHgGe-Me₃. In both cases the spectrum underwent no change during the three days after the first recording, which was made within 10 min of the preparation of the solution, and so equilibrium (1) must be established within a few minutes.

In view of the results obtained, it might be expected that exchange of Me_3M groups between different molecules of the separate $(Me_3M)_2Hg$ compounds would occur fairly rapidly. However, the NMR spectrum of bis(trimethylsilyl)mercury in carbon disulphide or dichloromethane shows a coupling of 40 Hz between the ¹⁹⁹Hg atom and the methyl protons⁴, which means that a Me₃Si group must remain attached to a specific mercury atom for at least 0.01 sec.

The exchange of groups in compounds RHgR' or R_3MHgMR_3 is probably a 4-centre molecular process, of type (2). The readier exchange of Me₃M groups

$$Me_{3}Si-Hg-SiMe_{3}$$

$$| \qquad | \qquad \rightarrow 2 Me_{3}SiHgGeMe_{3}$$

$$Me_{3}Ge-Hg-GeMe_{3}$$
(2)

compared with that of alkyl groups is in accord with a generalisation, based on orbital symmetry arguments, that for reactions of this type lower activation energies should be found for systems containing heavier elements⁵.

EXPERIMENTAL

Decomposition of a mixture of $(Me_3Si)_2Hg$ and $(Me_3Ge)_2Hg$

(i). A mixture of $(Me_3Si)_2Hg$ (0.38 g) and $(Me_3Ge)_2Hg$ (0.51 g) in cyclohexane (2 ml) was kept in a sealed tube at 210° for 15 h. Mercury was produced in 100% yield, and analysis by GLC showed that $Me_3SiGeMe_3$ had been formed in 87% yield, along with $Me_3SiSiMe_3$ and $Me_3GeGeMe_3$ in 12 and 13% of the theoretically possible yields.

(*ii*). Photolysis for 10 h at 40° of a mixture of $(Me_3Si)_2Hg(0.35 g)$ and $(Me_3Ge)_2-Hg(0.42 g)$ in cyclopentane gave mercury (100%), $Me_3SiGeMe_3$ (78%), $Me_3SiSiMe_3$ (10%), and $Me_3GeGeMe_3$ (11%).

(iii). Dry air was passed into a mixture of (Me₃Si)₂Hg (0.21 g) and (Me₃Ge)₂Hg

^{*} There should also be an unsymmetrical stretching vibration at about 207 cm⁻¹ but this is a forbidden transition which would be very weak in the Raman spectrum; no scattering was detected at this frequency.

J. Organometal. Chem., 23 (1970) 403-405

(0.26 g) in cyclopentane (2 ml) to give mercury (100%), Me₃SiOGeMe₃ (90%), (Me₃Si)₂O (3%), and (Me₃Ge)₂O (4%); the compound Me₃SiOGeMe₃, n_D^{25} 1.4007, b.p. 118–120°/761 mm (lit.,⁴ 116.5–117.5/723 mm) was isolated from the products by preparative GLC on a column of 20% SE 30 on 85–100 mesh Chromosorb (Found: C, 35.1; H, 8.85. C₆H₁₈GeOSi calcd.: C, 34.8; H, 8.8%). Essentially the same mixture of products was obtained when a solution of the compound Me₃SiHg-GeMe₃ was similarly treated.

(Trimethylgermyl)(trimethylsilyl)mercury (impure)

A solution of bromotrimethylgermane (9.8 g, 0.05 mole) and chlorotrimethylsilane (5.4 g, 0.05 mole) in dry degassed cyclohexane (20 ml) was shaken under nitrogen for 3 weeks with sodium amalgam (450 g, 0.5% w/w). The cyclohexane layer was filtered under nitrogen (No. 4 glass-sinter filter), and the solvent was removed under reduced pressure to give bright yellow crystals (4.8 g, 25%). Sublimation at 60°/0.01 mm gave material of m.p. 106–110°. (Found : C, 18.9; H, 4.85. C₆H₁₈GeHgSi calcd.: C, 18.4; H, 4.6%). The mass spectrum showed peaks of expected isotope pattern centred around *m/e* 348 and 438, attributed to the ions C₆H₁₈Si₂Hg⁺ and C₆H₁₈-Ge₂Hg⁺, in addition to the peak at 392 attributed to C₆H₁₈GeSiHg⁺, indicating that there was some contamination by (Me₃Si)₂Hg and (Me₃Ge)₂Hg. Attempts to remove these impurities by fractional sublimation met with only partial success.

Raman spectra

A Coderg Type PH1 helium-neon laser Raman spectrometer was used. Solutions of the mercurials in degassed anhydrous cyclopentane were filtered under nitrogen into the cell to ensure the absence of metallic mercury.

ACKNOWLEDGEMENT

We thank the Science Research Council for general support and for the award of a Research Studentship to one of us (SWB).

REFERENCES

- 1 R. E. DESSY, F. KAPLAN, G. R. COE AND R. M. SALINGER, J. Amer. Chem. Soc., 85 (1963) 1191.
- 2 N. S. VYAZANKIN, G. A. RAZUVAEV, E. N. GLADYSHEV AND T. G. GURIKOVA, Dokl. Akad. Nauk. SSSR, 155 (1964) 1108; G. A. RAZUVAEV AND N. S. VYAZANKIN, Pure Appl. Chem., 19 (1969) 353.
- 3 G. HERZBERG, Infrared and Raman Spectra of polyatomic Molecules, Van Nostrand, New Jersey, 1945, pp. 172–173.
- 4 A. G. LEE, J. Organometal. Chem., 16 (1969) 321.
- 5 R. A. JACKSON, J. Chem. Soc. B, (1970) 58.
- 6 H. SCHMIDBAUR AND M. SCHMIDT, Chem. Ber., 94 (1961) 1138.

J. Organometal. Chem., 23 (1970) 403-405